skip to main content


Search for: All records

Creators/Authors contains: "Baker, Amanda L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Ceramic–polymer composites are of interest for designing enhanced and unique properties. However, the processing temperature windows of sintering ceramics are much higher than that of compaction, extrusion, or sintering of polymers, and thus traditionally there has been an inability to cosinter ceramic–polymer composites in a single step with high amounts of ceramics. The cold sintering process is a low‐temperature sintering technology recently developed for ceramics and ceramic‐based composites. A wide variety of ceramic materials have now been demonstrated to be densified under the cold sintering process and therefore can be all cosintered with polymers from room temperature to 300 °C. Here, the status, understanding, and application of cold cosintering, with different examples of ceramics and polymers, are discussed. One has to note that these types of cold sintering processes are yet new, and a full understanding will only emerge after more ceramic–polymer examples emerge and different research groups build upon these early observations. The general processing, property designs, and an outlook on cold sintering composites are outlined. Ultimately, the cold sintering process could open up a new multimaterial design space and impact the field of ceramic–polymer composites.

     
    more » « less
  2. Abstract

    This paper describes a sintering technique for ceramics and ceramic‐based composites, using water as a transient solvent to effect densification (i.e. sintering) at temperatures between room temperature and 200 °C. To emphasize the incredible reduction in sintering temperature relative to conventional thermal sintering this new approach is named the “Cold Sintering Process” (CSP). Basically CSP uses a transient aqueous environment to effect densification by a mediated dissolution–precipitation process. CSP of NaCl, alkali molybdates and V2O5with small concentrations of water are described in detail, but the process is extended and demonstrated for a diverse range of chemistries (oxides, carbonates, bromides, fluorides, chlorides and phosphates), multiple crystal structures, and multimaterial applications. Furthermore, the properties of selected CSP samples are demonstrated to be essentially equivalent as samples made by conventional thermal sintering.

     
    more » « less